
AI in libraries on $5 a day: image
matching system with Koha: a case
study

Dr Edmund Balnaves

Prosentient Systems

ebalnaves@prosentient.com.au

Abstract

This article takes the reader on a journey through AI integration with a well know library management

system, Koha. By leveraging open source and cloud services, an image AI integration is demonstrated on

a budget of less than $5/day. This article explores the strengths and opportunities that lie in open-source

AI projects with an example of integrating these services with a widely implemented open-source library

management system.

Introduction

Image matching as great potential value for a wide range of library applications, from patron

authentication to machine learning.

Many AI toolkits have their origins in open source. Python has been a development language of choice in

this area, and tool kits for textual and image recognition about. Examples include SCIKit, ….

An open-source implementation of AI tools has a range of privacy benefits to the library. Image and

digital content are not sent to external services where the national hosting and privacy of this content

may be uncertain. Once of the ethical considerations in the adoption of AI is the degree to which the

algorithmic elements of the solution used can be scrutinised, tested and understood. In the case of open

source, the library has agency over the algorithmic design of the AI implementation.

In this case study we explore the process of integrating an open-source AI toolkit with an open-source

library management system. In the process with explore the use of cloud services in order to provide the

proof-of-concept platform for the whole solution at low cost.

Choosing the platform and toolkit

Cloud platforms provide an environment that allow for low-cost proof of concept design of system

without having to invest in infrastructure in the first instance. In this case study we will illustrate the use

of cloud infrastructure in Amazon Web services to implement the proof-of-concept integration

demonstrated in this article, with installation of a Koha library management system and the AI tool kits,

with use of Koha plugings to bring the two solutions together.

The final implementation of the solution can be within the normal infrastructure of the institution. There

are several advantages to implementing the initial trial solution within a cloud infrastructure. This allows

the formulation of the final technical architecture required without having to commit to this architecture

during the design stages. The solution sets can therefore be created and “torn down” quite easily while

the project is in evolution. The cloud infrastructure also allows experimentation with solution options

without large upfront investment. The security architecture around the solution can also be safely tested

outside the target implementation environment.

The use of cloud platforms for initial proof of concept testing has many benefits. During the initial

exploratory stage with software experimentation the final target hardware environment may be unknown

as different packages are tested for their suitability. In this case we explored several open-source image

recognition packages before we arrived at the CodeProject AI instance. We settled on the CodeProject

AI because:

• It installed very easily

• It passed initial image testing well

• It provided a REST Application Programming Interface for integration with other applications.

This was the key requirement for our cross-platform integration.

Image recognition toolkit.

Docker is a platform that allows lightweight installation of software based on “containers” that are pre-

baked with the solution you are installing. The nicety of docker is it is platform-agnostic. You can install

Linux docker images on Windows systems for instance, or Windows docker images on Linux systems.

In our business we use docker images to rapidly run in and test solutions. We also use docker images for

some production solutions (when thoroughly tested).

Docker lives “on top” of the host platform you are running it on, and contains within it sufficient of the

operating system environment that your application uses in order to run the application. Because it is so

“lightweight” it is very easy to deploy.

Docker provides an excellent method for undertaking software “throw away” trials in order to test the

suitability of software, and also for production deployment of software in scalable solutions.

For the purpose of this proof of concept we were looking for an image recognition toolkit that had a good

Application Programming Interface and a web interface for testing purposes, and facial recognition

features. Fortunately, in the AI space, there are many open-source solution in both machine learning and

image recognition.

We explored this project with a recent kit released by CodeProject. CodeProject release a range of

solution kits for developers to experiment with new technologies. One of the recent solution toolkits was

CodeProject AI, an implementation of Python open-source image recognition technologies within a

windows or Linux environment. The CodeProject AI solution has a docker install. There are many others

– e.g. https://github.com/YashNita/FaceNet-Object-Detection-Net- and projects like

https://realpython.com/face-recognition-with-python/ .

The deployment of the CodeProject AI server was accomplished with a single command:

docker run -p 32168:32168 --name CodeProject.AI-Server -d -v

/usr/share/CodeProject/AI:/usr/share/CodeProject/AI codeproject/ai-server:1.6.8.0

In one command this:

• Downloads the docker project

• Unpacks the docker images and launches the docker processes

Code project makes its toolkit by default available via web port 32168 as a web server (i.e.

http://localhost:32168). They also kindly provide a web testing interface at

http://localhost:32168/vision.html . In our testing we exposed this interface as:

http://aidemo.intersearch.com.au:32168/vision.html

We used this to trial some initial face recognition. The function allows upload of an image and testing

recognition of image variants.

The web interface above has corresponding Application Programming Interfaces (API) which are the

methods for integrating with other systems – in this case Koha.

Cloud server setup

Cloud servers are available from many vendors, and are increasingly positioned globally across most

continents and larger industrial centres. They provide a platform to create and use computing resources

https://github.com/YashNita/FaceNet-Object-Detection-Net-
https://realpython.com/face-recognition-with-python/
http://localhost:32168/
http://localhost:32168/vision.html
http://aidemo.intersearch.com.au:32168/vision.html

on a fractional basis with micro-billing tied to the amount of resources used. For this reason they provide

a nice environment for concept testing software architectures. In this way a proof of concept of a new

software solution can be tested in a “throw away” environment without large upfront hardware

expenditure. The final deployment may or may not be in a cloud platform.

In this article this concept is used to demonstrate the implementation of Koha version 21.11 on an AWS

Ubuntu 20.04 server with integration to AI capabilities of CodeProject’s AI docker images.

It is easy to create an AWS server for throw-away testing. Creating the AWS instance requires that you:

• Register an AWS account (free but linked to a credit card)

• Create a server (“EC2” in AWS terminology). We created an “EC2” instance using the standard

AWS ubuntu 20.04 server open source base. However, there are many flavours of computer

operating system that can be deployed (at differing costs).

We installed Koha and Code Project initially on a free tier eligible server following the standard installation

guidelines for Koha at https://wiki.koha-community.org/wiki/Koha_on_Debian - using the Ubuntu 21.11

pathway.

In this project we created a small instance in the free tier layer. However, in our testing we soon found

that we could not install the image recognition software in the smallest instance. The target installation

required at least 4GB of memory. We discovered this when the server “hung” when launching the

CodeProject docker image at the same time as the Koha server. So, we “threw away” the server we had

just created and started again with a larger image.

We finally deployed on an 8GB (EC2 type “T3 large:) server after running up and throwing away several

sever instances. This cloud server has 2 x CPU and 8GB x memory.

In this way we arrived at a minimum architecture for the deployment environment. This is also how we

arrived at our $5/day cost.

https://wiki.koha-community.org/wiki/Koha_on_Debian

Implementation of Koha

Koha is one of the most widely implemented library management systems in the world. It is an open-

source library management solution supported by a rich community of developers, service providers and

librarians around the globe.

Koha is an open-source library management system that runs on Debian, Ubuntu or other flavours of

Linux. It has a well-documented installation process (see https://wiki.koha-

community.org/wiki/Koha_on_Debian). We installed Koha on our EC2 instance alongside our docker

CodeProject instance. It took 20 minutes to install and deploy Koha on the server (with the advantage of

familiarity).

Integrating with Koha

Koha provides a “plugin” system that allows integration of features within the application. The plugin

system means that the developer does not have to touch the code base of the application. The plugin

system itself has API hooks and hooks to place code within the application. In the case of this project, we

developed a plugin based on existing community published plugins.

This plugin does two minimal functions for the project integration task:

• An integration hook between the OPAC login page and the AI server to

o Scan an image

o Send the image to CodeProject AI

o Authenticate the use on Koha based on a successful match

• An integration hook on the Patron page to allow transfer of an uploaded patron image to

CodeProject AI

Both development tasks essentially involved “injecting” JavaScript into the login page and librarian’s

patron editing page to upload images using the Koha Plugin API integration as follows:

• The OPAC login page shows JavaScript to capture an image using the webcam

• The JavaScript’s sends to image to Koha using the Koha Plugin integration with the Koha API

• The Koha plugin sends the image to the Code Project AI server for validation or registration

https://wiki.koha-community.org/wiki/Koha_on_Debian
https://wiki.koha-community.org/wiki/Koha_on_Debian

By relying heavily on existing plugin examples, and using the APIs in JavaScript, Koha and CodeProject, the

proof-of-concept development took two days to completed. This was the most complex programmatic

task in this exercise. It involved software development focussed primarily on interacting with the Koha

plugin functions and the CodeForLibAI functions.

JavaScript

Media

devices

WebCam

hook

Koha API

(With plugin

“end points”
Image

CodeProject

API

Recognised

The Online Public Access Catalogue (OPAC) login page offers the end user the choice to use the camera to

sign in.

Testing the AI toolkit – Confidence levels

Artificial Intelligence systems rely on models of the real world of one sort or another. Image recognition

for instance can use many instances of sample images to “train” a model for subsequent recognition of

similar instances. The more samples the better the matching. When a applying a real-world instance

against a model, the process is always an approximation: this image matches this much. This is the level

of confidence.

The matching confidence levels are crucial in the context of an authentication facial image recognition.

Too low a confidence level accepted from the matching algorithm and any face is happily accepted. Too

high a confidence level and it is functionally impossible to log in. Our initial explorations indicated a

confidence level of > 0.75 as a minimum confidence.

The important thing in using AI of any sort is the algorithms used and methodology for use, and whether it

provides levels of confidence at any of its modelling or processing layers. The benefit of open source is

the whole process is open to scrutiny. The CodeProject AI also yields a confidence level on its image and

facial matching – this can be used to good effect in the overall testing.

CodeProject AI does not store the original image once it has captured and processed that image. It simply

stores a vector representing the face captured. Exploring the source reveals an SQLITE database. The

project is a wrapper for a well-known open-source projects – in this case ObjectDetectionYolo which itself

uses OpenCV.

How does this toolkit store the face? No image is saved by the toolkit. Instead, it stores a vector defining

the unique points defining the face, using the underlying image recognition software. It stores this vector

in a database table, which can be explored as follows:

apt install sqlite

sqlite3 ./faceembedding.db

.tables

List the table

Select * from TB_EMBEDDINGS

We see a set a vector array that describe the unique points for a face.

0.026341065674227185, 0.03604118525981903, 0.05735778045518771, -0.04988788140183555, -

0.001674302271567285, 0.028918949887155787, -0.006237712223018781, 0.008357822452184116,

0.08690883219222096, 0.03714309023022652, 0.03508520871400833, 0.016281576706784135,

……

0.05015251785516739, 0.008849352598190308, 0.06125432997941971, -0.00867899414151907,

0.042281255453185, -0.010691865347325802, -0.02570171467959881, -0.01565711200237274, -

0.03459269553222928, -0.011747458018362522, -0.03084883838891983, -0.05788338112831116, -

0.09049146135759354, -0.020388029515743256, -0.061122243144919586, 0.026703915790077972,

0.0673513263463974, 0.04039162260029793, 0.018179498612880707]

(Note – this is not a real vector).

The API call returns matched face ids and the confidence level for the match.

The application using the toolkit is left to make a decision on what to do based on the confidence levels of

the match.

WebCam integration, Secure Server and image scanning
embedded in a website

To be useful within the Koha application, it was necessary to allow Koha to take an image snapshot to

send to the server.

This could have been the trickiest part of the project: accessing the web cam from the browser to scan

facial images. Fortunately, this is a problem solved several years ago with the browser introduction of

HTML5 and media functions for the browser. This allows JavaScript functions to access and manipulate

images from the Web Cam.

One of the first integration issues with the web interface for Koha was that accessing the Web Cam. For

good security reasons, you cannot access the webcam from a non-SSL website. The reason for this is

sound: anyone on the local network could watch or listen to your video/audio stream if the stream is not

through a secure connection. Firefox and Chrome disable to WebCam functions if the web page itself is

not secure.

Secure Socket Layer (SSL) is the technology used to create a secure information interchange between your

browser (Chrome/Firefox, etc) and the server you are connecting to. Web sites use public certificates

shared with your browser to create this secure connection.

Creating an SSL (https) protected website is an additional step required for this proof of concept. While

there are options for what are called “self-signed” certificates, they do not always overcome the obstacle

of using secured components of the browser.

To create an SSL-protected website there are two components.

• Creating a domain name. This will be the public web domain of the website on which our Koha

will be hosted. We use aidemo.intersearch.com.au. Creating a domain name requires the use of

a domain registration company (like GODADDY) or your own organisation if they have that

capability.

• Installing a secure certificate for the domain. An SSL certificate needs to be installed on your

server. This certificate is time limited (these days a maximum of a year) and must be created

through a well-known registrar (one that is widely recognised on client computers and devices).

There can be a fee associated with this certificate creation, but some sites provide the certificate

for free as part of the hosting.

In this project we had control of an existing domain, intersearch.com.au so we registered two sub-

domains for Koha: aidemo.intersearch.com.au and aidemoadmin.intersearch.com.au. These domains

translated to our cloud web server.

We created the following domains and registered certificates for them:

 https://aidemo.intersearch.com.au

 https://aidemoadmin.intersearch.com.au

Fortunately, there is a free certificate service called “Lets Encrypt” (https://letsencrypt.org/). This

initiative provides an open access method for registering certificates at no charge. This terrific service

provides a solid and robust means for encryption of your website. It has been responsible for a much

greater level of systematic website encryption. Let’s Encrypt is a non-profit authority. It takes

sponsorships and donations. Support for this wonderful service is greatly to be encouraged.

LetsEncrypt can be integrated with the servers very easily with a tool “certbot”.

https://www.inmotionhosting.com/support/website/ssl/lets-encrypt-ssl-ubuntu-with-certbot/

Install snapd:

 sudo apt install snapd

 Ensure you have the latest snapd version installed:

 sudo snap install core; sudo snap refresh core

 Install Certbot with snapd:

 sudo snap install --classic certbot

 Create a symlink to ensure Certbot runs:

sudo ln -s /snap/bin/certbot /usr/bin/certbot

Once installed, the certbot tool can be used to create certificates that are automatically renewed on this

server.

Ethical review

Any project that captures biometric data, or data that could be interpreted as biometric, raises some

considerations.

Retention: how long is the image data to be retained – is it removed after it’s relevant usage or when the

client is no longer a library subscriber

Access: who can access the library subscriber data? For instance, in our production implementations for

Koha we added two factor identification requirements for all reports that contain library subscriber data,

in addition to the login security for the system.

Appropriate use: is the captured image data used appropriately and only for allowed use. In this case its

purpose is to provide a simple, hands free, face-based login. There are evident weaknesses with such a

system that might not make it suitable in, for instance, a public library setting. It might, however , be very

useful in a 24x7 professional/research library setting.

Consent: the use of the face recognition login should not be activated automatically – in this case it is

triggered by the end user, should they wish to use this method for authentication. Traditional password

authentication is still also enabled.

Wrapping up the proof of concept

The purpose of this exploration was to determine the feasibility and complexity of integrating an image

recognition toolkit with the well-known open-source library system Koha. On the journey we

demonstrated the use of a range of methodologies for building such a tool kit with little infrastructure

cost, indeed on a budget of $5/day.

From here to production

There is long journey from a “proof of concept” to a “production implementation”. Considerations for a

production implementation include:

• Testing across different devices, environments

• Testing across different facial profiles/population/gender sets

• A security review of the solution. How safe are all the components used. What vulnerabilities

apply and can they be mitigated

• A project ethical review

