Please use this identifier to cite or link to this item:
Title: A proxy outcome approach for causal effect in observational studies: a simulation study.
Authors: Liang, Wenbin
Zhao, Yuejen
Lee, Andy H
Affiliation: National Drug Research Institute, Health Science, Curtin University, G.P.O. Box U 1987, Perth, WA 6845, Australia..
Northern Territory Department of Health, Darwin, NT 0800, Australia..
School of Public Health, Health Science, Curtin University, Perth, WA 6845, Australia..
Issue Date: 2014
Citation: BioMed research international 2014; 2014: 872435
Abstract: Known and unknown/unmeasured risk factors are the main sources of confounding effects in observational studies and can lead to false observations of elevated protective or hazardous effects. In this study, we investigate an alternative approach of analysis that is operated on field-specific knowledge rather than pure statistical assumptions. The proposed approach introduces a proxy outcome into the estimation system. A proxy outcome possesses the following characteristics: (i) the exposure of interest is not a cause for the proxy outcome; (ii) causes of the proxy outcome and the study outcome are subsets of a collection of correlated variables. Based on these two conditions, the confounding-effect-driven association between the exposure and proxy outcome can then be measured and used as a proxy estimate for the effects of unknown/unmeasured confounders on the outcome of interest. Performance of this approach is tested by a simulation study, whereby 500 different scenarios are generated, with the causal factors of a proxy outcome and a study outcome being partly overlapped under low-to-moderate correlations. The simulation results demonstrate that the conventional approach only led to a correct conclusion in 21% of the 500 scenarios, as compared to 72.2% for the alternative approach. The proposed method can be applied in observational studies in social science and health research that evaluates the health impact of behaviour and mental health problems.
DOI: 10.1155/2014/872435
Type: Journal Article
Subjects: Adult
Health Status
Logistic Models
Computer Simulation
Observational Studies as Topic
Appears in Collections:NT Health digital library

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.